Phenotypic Plasticity and Effects of Selection on Cell Division Symmetry in Escherichia coli
نویسندگان
چکیده
Aging has been demonstrated in unicellular organisms and is presumably due to asymmetric distribution of damaged proteins and other components during cell division. Whether the asymmetry-induced aging is inevitable or an adaptive and adaptable response is debated. Although asymmetric division leads to aging and death of some cells, it increases the effective growth rate of the population as shown by theoretical and empirical studies. Mathematical models predict on the other hand, that if the cells divide symmetrically, cellular aging may be delayed or absent, growth rate will be reduced but growth yield will increase at optimum repair rates. Therefore in nutritionally dilute (oligotrophic) environments, where growth yield may be more critical for survival, symmetric division may get selected. These predictions have not been empirically tested so far. We report here that Escherichia coli grown in oligotrophic environments had greater morphological and functional symmetry in cell division. Both phenotypic plasticity and genetic selection appeared to shape cell division time asymmetry but plasticity was lost on prolonged selection. Lineages selected on high nutrient concentration showed greater frequency of presumably old or dead cells. Further, there was a negative correlation between cell division time asymmetry and growth yield but there was no significant correlation between asymmetry and growth rate. The results suggest that cellular aging driven by asymmetric division may not be hardwired but shows substantial plasticity as well as evolvability in response to the nutritional environment.
منابع مشابه
media and specific growth rate selection for high-cell-density cultivation of recombinant escherichia coli producing hGM-CSF in fed-batch process
متن کامل
Protein Aggregation in E. coli : Short Term and Long Term Effects of Nutrient Density
During exponential growth some cells of E. coli undergo senescence mediated by asymmetric segregation of damaged components, particularly protein aggregates. We showed previously that functional cell division asymmetry in E. coli was responsive to the nutritional environment. Short term exposure as well as long term selection in low calorie environments led to greater cell division symmetry and...
متن کاملRelationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli
Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods: The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...
متن کاملModified Vero cell induced by Bifidobacterium bifidum inhibits enterohemorrhagic Escherichia coli O157:H7 cytopathic effect
Enterohemorrhagic Escherichia coli (EHEC), such as E. coli O157:H7, are emerging food-borne pathogens worldwide. This micro-organism can damage the epithelial tissue of the large intestine. The cytotoxic effects can be neutralized by probiotics such as Bifidobacterium bifidum. Probiotics are viable cells that have beneficial effects on the health of the host. The preventing activity of B. bifid...
متن کاملTime and Intensity of Electromagnetic waves impacts on the Growth phase of Escherichia coli bacteria
Background: Electromagnetic fields have various effects on the biochemical and cellular behavior of microorganisms due to radiation. It is necessary to investigate more extensively the effects of these magnetic fields on some microorganisms, such as bacteria. The purpose of this study was tp investigate the effects of magnetic fields on Escherichia coli bacteria (PTCC 1330). Materials and Meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011